新材料を用いて製作した試作キャパシタ。企業と協力して実用化をめざす
キャパシタセルの構造。電極に新材料を使用することで蓄電容量を効率良くUPさせた
※なお、本技術は1月27日(水)~29日(金)に東京ビッグサイトで開催中の「nano tech 2016」にて展示・紹介しております
「nano tech 2016」 http://www.nanotechexpo.jp/main/index.html
<背景>
分子レベルの厚さで構成される2枚の電極の間で電荷が引き合うことによって電気を蓄える「電気二重層」という物理現象を用いたキャパシタは、電気エネルギーを短時間で効率良く充電・放電でき、劣化が少ないという特徴があります。
一方、電池(バッテリー)に比べて、作った電気を長時間連続的に流したり、大容量の電気を蓄えるためには、静電容量を増やす技術が求められています。
<研究の概要>
松本教授は、ナノ材料であるグラフェンにリチウムを練り混ぜた新材料(株式会社MICC TECにより開発された還元型酸化グラフェン)を装置の電極に用いることで、大容量の蓄電が可能になることを解明しました。電極の隙間にグラフェンが入り込み、表面積が増加することで蓄えられる電力量が増す仕組みです。
また、これを用いたキャパシタを試作して電気特性に関する評価を行い、従来の活性炭を用いたものより約2倍の蓄電に成功しました。
これにより、太陽光、風力発電などの需要と供給のバランスが取りにくい自然エネルギーを蓄えることが可能となるほか、電気自動車のバッテリーにキャパシタを追加することにより、ブレーキ操作時に失ってしまう大量の運動エネルギーをモータ稼働用の電気エネルギーに効率良く変換することができ、自動車の省エネ化・性能向上につながると期待されています。
<今後の展開>
今後、試作したキャパシタを「急速に充放電ができる、小型・高性能な大容量蓄電装置」として、再生可能エネルギーや電気自動車、電子機器などで実用化できるよう、使用シーンに合わせた電気特性の評価などを進めていきます。