ショウジョウバエが持つユニークな性染色体を用いて性染色体進化に関する共通のメカニズムを発見
性染色体は多くの生物に存在する代表的な性決定機構のひとつです。性染色体は、もともとは常染色体に由来し、常染色体が性決定遺伝子を獲得することで性染色体になると考えられています。このようにして性染色体が生じると、X染色体とY染色体は減数分裂組換え(注1)を行わなくなり、その結果、Y染色体は多くの遺伝子を失い退化します。すると、オスはX染色体を1本しか持たないのに対し、メスはX染色体を2本持つという不均衡が生じるため、多くの生物は遺伝子量補償(注2)とよばれるメカニズムによってその不均衡を解消しています。しかし、性染色体が誕生したあと、どのようにして遺伝子量補償が発達するのかについては未解明な点が多く残されていました。
東京都立大学大学院理学研究科生命科学専攻の野澤昌文准教授、田村浩一郎教授らは、情報・システム研究機構国立遺伝学研究所の豊田敦特任教授らの協力のもと、ネオ性染色体(注3)というユニークな性染色体を独立に獲得したショウジョウバエ3種を用いて、誕生した直後の性染色体がどのように進化するのかを研究しました。すると、誕生して間もないにもかかわらず、3種のネオY染色体はすでに退化しつつある状況にあることが分かりました。また、ネオY染色体上の遺伝子が機能しなくなると、ネオX染色体上の相同な機能遺伝子の発現量が上昇して、これを補っている傾向が見られました。さらに、このうち2種は同じ常染色体に由来するネオY染色体を持ちますが、同じ遺伝子が有意に多く機能を失っている傾向にあることが分かりました。したがって、性染色体は共通のメカニズムによって進化している可能性があります。今後、ショウジョウバエ以外の様々な生物の性染色体を調べることで、性染色体の進化プロセスをより一般化できるようになるかもしれません。本研究は、日本学術振興会の科学研究費(25711023,15K14585,17H05015,21H02539 to M.N.)、および文部科学省のゲノム支援(221S0002 to A.T.)及び先進ゲノム支援(16H06279 to A.T.)の支援を受けて行われました。
【画像:https://kyodonewsprwire.jp/img/202110212090-O1-BpoVj3q9】
2. ポイント
■ 性染色体の初期進化には未解明な点が多かったため、ネオ性染色体という起源の新しいユニークな性染色体を持つショウジョウバエ3種を用いて研究を行った。
■ 3種のいずれにおいても、ネオY染色体上の遺伝子が機能しなくなると、ネオX染色体上の相同遺伝子の発現量が上昇してそれを補っていた。
■ 3種のいずれにおいても、ネオY染色体上の遺伝子だけでなく、ネオX染色体上の遺伝子も常染色体上の遺伝子に比べて有意に多くの遺伝子が機能を失っていた。
■ 3種のいずれにおいても、卵巣で強く発現するネオX染色体上の遺伝子や精巣で強く発現するネオY染色体上の遺伝子は、それぞれ機能遺伝子として存続し続ける傾向があった。
■ 同じ常染色体に由来する2種のネオY染色体では、同じ遺伝子が機能を失っている傾向にあった。
■ 性染色体誕生後の進化プロセスには共通性が存在するのかもしれない。
3. 研究の背景
性染色体は多くの生物が持つ代表的な性決定機構のひとつですが、その進化には多くの謎が残されています。そのうちのひとつが、Y染色体の退化です。性染色体は、もともと一対の常染色体が性決定遺伝子などを獲得して生じると考えられています。すると、獲得した性決定システムを維持するには、性染色体同士の組換えがあると性決定が不安定になります。したがって、Y染色体とX染色体は減数分裂組換えを行わなくなります。その結果、Y染色体は有害な変異を除去できなくなり、多くの場合、退化します。実際、ヒトのX染色体には約1000個もの遺伝子が存在するのに対し、Y染色体には数十個の遺伝子しかありません。そうすると、メスのX染色体上の遺伝子はそれぞれ2個存在するのに対し、オスには相同な遺伝子が1個しかなくなってしまいます。このような大規模な遺伝子消失を、生物はどのように補ってきたのでしょうか。
1960年代、進化学者の大野乾(すすむ)博士は、『遺伝子量補償』という概念を提唱し、オスのX染色体全体の遺伝子の活性が2倍になることで、この不利を補っていると考えました。以来、数多くの研究が行われ、多くの生物において、確かにオスの遺伝子活性が上昇していることが明らかになりました。しかし、性染色体誕生後、どのようにして遺伝子量補償が発達するのかについては多くの謎が残されていました。
4. 研究の詳細
そこで、東京都立大学大学院理学研究科生命科学専攻の野澤昌文准教授らは、ネオ性染色体という誕生して間もないユニークな性染色体を持つショウジョウバエ3種を、ネオ性染色体を持たないそれぞれに近縁なショウジョウバエと比較することで、ネオ性染色体の進化を浮き彫りにしようと試み、これらのショウジョウバエのゲノム配列(注4)やトランスクリプトーム配列(注5)を決定して比較しました。すると、誕生した直後(3種のいずれも過去約100万年以内)であるにもかかわらず、ネオY染色体の退化はすでに始まっており、多くのネオY染色体上の遺伝子が機能を失っていました。しかし、これら3種のショウジョウバエのいずれにおいても、ネオX染色体上の相同遺伝子の活性が上昇してこれを補っていることが分かりました。一方、ネオY染色体上の遺伝子が機能している場合、ネオX染色体上の相同遺伝子の活性はさほど上昇していませんでした。したがって、これらのショウジョウバエには、ネオY染色体遺伝子の活性を認識して、ネオX染色体相同遺伝子の活性を制御するメカニズムが存在すると考えられます。
一方で、これら3種のショウジョウバエでは、ネオY染色体だけでなく、ネオX染色体上の多くの遺伝子も機能を失っていることが分かりました。これまでY染色体が退化することは知られていましたが、X染色体も退化し得ることは知られていませんでした。唯一、野澤昌文准教授らの先行研究(Nozawaら 2016 Nature Communications)において、ショウジョウバエの1種でX染色体も退化する可能性が示唆されていましたが、本研究は、少なくともこの現象がショウジョウバエのネオ性染色体において一般化できる可能性を示しています。また、卵巣などメスの生殖器官で強く発現している遺伝子、すなわちメスにおいて重要な遺伝子は、ネオX染色体において機能を保持し続ける傾向にあることも分かりました。
さらに研究チームは、ネオ性染色体を持つ3種のショウジョウバエのうちの2種が、同じ常染色体に由来するネオ性染色体を持つことに着目し、性染色体になった後の進化プロセスをより詳細に調べました。その結果、2つのネオY染色体では同じ遺伝子が有意に多く機能を失っている傾向にあることが分かりました。つまり、独立に生じた2つのネオY染色体は平行進化していたのです。
5. 研究の意義と波及効果
本研究は、性染色体を獲得したあと、生物がY染色体の退化をどのように補ってきたのか、という進化生物学における古くからの問題の一端を解明したと言えます。また、性染色体が誕生した直後の初期段階において、共通の進化プロセスが存在することを示唆しています。近年、塩基配列決定に関する新しい手法が続々と開発されています。これら最新の手法を用いてより広範な生物の様々な性染色体を解析することで、今後、性染色体進化に関する一般則を導き出せるかもしれません。
【用語解説】
注1)減数分裂組換え
生殖細胞ができる過程で母方由来の染色体と父方由来の染色体が組換えによって混ぜ合わさる現象のこと。減数分裂組換えによって、子供は親と異なる組み合わせのゲノムを持ち、多様性が生まれる。また、集団(種)に存在する有害な変異を効率的に除去できる。
注2)遺伝子量補償
オスとメスのX染色体の本数が異なる(オス:1本、メス:2本)ことによる不均衡を是正するメカニズムのこと。キイロショウジョウバエでは、1本しかないオスのX染色体上の遺伝子全体の活性が約2倍に上昇することで、この不均衡を解消している。一方、ヒトではメスの2本のX染色体のうち1本が不活性化することで、雌雄のX染色体上の遺伝子活性を等しくしている(X染色体の不活性化と呼ばれる)。
注3)ネオ性染色体
常染色体が性染色体と融合することによって生じた性染色体のこと。例えば、一対の常染色体の片方がY染色体と融合すると、その常染色体(すなわちネオY染色体)はY染色体と同じ遺伝様式となる。すると、もう一方の常染色体は、X染色体と融合していなくてもネオX染色体となり、X染色体と同じ遺伝様式となる。
注4)ゲノム配列
それぞれの生物が持つ遺伝情報の総体のこと。通常はA、T、G、Cの4種類の塩基の連続で表される。例えば、ヒトはそれぞれの細胞内に約31億個ものヌクレオチドが染色体ごとに連なったDNAを持ち、この総体がヒトゲノムである。
注5)トランスクリプトーム配列
それぞれの生物が持つ転写情報(RNA)の総体のこと。こちらも通常A、T、G、Cの4種類の塩基の連続で表される。ゲノムは全ての細胞で共通であるのに対し、トランスクリプトームは厳密にいうと細胞ごとに異なる。
【発表論文】
“Shared evolutionary trajectories of three independent neo-sex chromosomes in Drosophila”
Nozawa M, Minakuchi Y, Satomura K, Kondo S, Toyoda A, Tamura K.
Genome Research
DOI: 10.1101/gr.275503.121
大谷翔平「一番緊張したのはデコの始球式」DHで史上初のMVP受賞に真美子夫人とグータッチ
大谷翔平MVPにレネキーGM特別補佐「ナ・リーグで打者だけでMVPを獲得したことはすごい」
【阪神】岩貞祐太「来年やらなければ、キャリア終わり」今季登板2試合、3年契約の最終年へ覚悟
【日本ハム】上原健太「動ける100キロなら一番いい」筋力だけ6キロ増量に成功、巻き返し誓う
【阪神】田中秀太コーチが考える佐藤輝明の守備「もっともっと普通でいいよと」/新コーチに聞く
【阪神】岩崎優が宣言 ブルペンで打倒巨人&V奪回へ「ジャイアンツを見ても比重大きい」
【阪神】藤川監督V「すごく有意義な時間でした」サンテレビ「レッツゴー!タイガースゴルフ」
【プレミア12】逆転負けのベネズエラ監督「唯一の誤算は先発したピントが…」初回3失点悔やむ
【プレミア12】TBS中継「ルール・野球豆知識」が話題 多様化進みついに応援歌まで
松本人志をいじる 1時間51分ノンストップ漫才「2024年度版漫才 爆笑問題のツーショット」
ガーシーが綾野剛のLINE公開でネット騒然「ショック」「すごいエンタメ」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
俳優・火野正平さん死去 75歳 腰を骨折し体調崩す
斎藤元彦・前知事の再選確実 兵庫県知事選、失職から返り咲き
3刷目の重版決定!榎原依那のファースト写真集「Inaism」から、完全未公開カットをご紹介♡
小池里奈「超むっっっっっちむち」美バスト輝く黒ブラジャー近影に称賛「色気が増してる」
岡田将生が高畑充希との結婚発表
三浦瑠璃氏、斎藤元彦氏再選に「一番の敗者は当然、マスコミです」と私見
「スケスケ水着美尻」35歳女芸人のセミヌード写真展が大阪でも12月開催決定「本当に最後」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
ガーシーが綾野剛のLINE公開でネット騒然「ショック」「すごいエンタメ」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
四千頭身、テレビから消えた理由を明かすも批判殺到「人のせいにするな」
ユーチューバーもこう氏、元彼女・成海瑠奈について赤裸々告白
父が再婚の丸山隆平(36)現在の家族関係がとんでもないことになっていたと話題に
3時のヒロイン福田麻貴(32)は元アイドルだった!昔の姿がかわいいとヲタク歓喜
たぬかな、「あのチビやろ?」迷惑系黒人YouTuberへの苦言が物議
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
「愛が生まれた日」藤谷美和子(56)の現在がヤバい!?徘徊生活を送っていた過去も明らかに。
大谷翔平「一番緊張したのはデコの始球式」DHで史上初のMVP受賞に真美子夫人とグータッチ
大谷翔平MVPにレネキーGM特別補佐「ナ・リーグで打者だけでMVPを獲得したことはすごい」
【阪神】岩貞祐太「来年やらなければ、キャリア終わり」今季登板2試合、3年契約の最終年へ覚悟
【日本ハム】上原健太「動ける100キロなら一番いい」筋力だけ6キロ増量に成功、巻き返し誓う
【阪神】田中秀太コーチが考える佐藤輝明の守備「もっともっと普通でいいよと」/新コーチに聞く
【阪神】岩崎優が宣言 ブルペンで打倒巨人&V奪回へ「ジャイアンツを見ても比重大きい」
【阪神】藤川監督V「すごく有意義な時間でした」サンテレビ「レッツゴー!タイガースゴルフ」
【プレミア12】逆転負けのベネズエラ監督「唯一の誤算は先発したピントが…」初回3失点悔やむ
【プレミア12】TBS中継「ルール・野球豆知識」が話題 多様化進みついに応援歌まで
松本人志をいじる 1時間51分ノンストップ漫才「2024年度版漫才 爆笑問題のツーショット」