富士通と富士通研究所、ものづくり分野で設計データからシミュレーション結果をリアルタイムに予測する技術を開発
- 2018年09月19日 14:00:00
- テクノロジー
- JCN Newswire
- コメント
今回、シミュレーションへ入力する設計データと、出力されるシミュレーション結果をAIに学習させることで、設計候補の高精度な評価を可能とする技術を開発しました。回路設計の工程における電磁波強度の評価により、シミュレーションと開発技術の推定誤差が+/-2.9%に抑えられることを確認できました。これにより、開発技術を、設計候補を選別する工程においてシミュレーションの代替として活用できる目途が得られ、設計候補の評価に要する時間の大幅な削減が期待できます。
開発した技術は、2019年度中に電磁波解析ソリューション「FUJITSU Technical Computing Solution Poynting」(注2)の追加機能として製品化するとともに、他の業種・業務への展開を検討する予定です。
開発の背景
ものづくりの分野の設計業務では、設計候補の考案、実物の試作とその評価を繰り返して、製品の仕様を固めていきます。設計業務の中でも上流工程では、費用と時間がかかる実物の試作を行う前に、仮想的に設計候補を評価することで、試作する候補を選別するシミュレーションが不可欠となっています(図1)。しかし、緻密さが求められるものづくりの分野では、シミュレーションに高い解像度が必要なため計算量が多く、設計候補ごとに実行する場合にはその計算時間の削減が課題となっています。
課題
設計を短時間で評価するために、シミュレーションの入・出力データから学習したAIにより評価値を推定する方法が考案されています(図2)。AIは入力データの部分的な特徴に基づいて学習を行いますが、ものづくり分野では、部分的な特徴よりも設計形状の全体像の方が評価値に大きく影響するため、実際のものづくり現場へ適用するためには、十分な精度が得られていませんでした。
開発した技術
設計候補をリアルタイムに評価するために、新たなAIの学習技術を開発しました。本技術では、以下の特徴により、学習データが十分に取得できない場合にも高精度な評価を実現します。
1. 物理法則にもとづくAI学習技術:
設計データから物理法則に基づく近似モデルにより求めた推定値を学習データとし、シミュレーションに基づく厳密なモデルで算出した性能予測値を正解データとしてAIに学習させる技術を開発しました。本技術では、近似モデルでの推定値として設計形状の全体像が反映された学習データを使用することで、性能予測値の推定を容易にし、設計データそのもので学習するよりも、少ない学習データでの高精度なAIの構築が可能になります。
2. 学習用シミュレーションデータ拡張技術:
一般的に、高精度のAIの学習では数十万以上におよぶ大量の学習データを必要とします。今回、シミュレーションの入・出力データをもとに、新たに学習用のデータを生成することで、学習データの不足を補う技術を開発しました。本技術では、AI学習の過程において、入力データの特徴の中で出力への寄与が小さくなる特徴を検出し、それらの特徴について入力をランダム化することで、新たな学習用データを生成します。これにより、学習用のデータが十分に収集できない場合においても、効果的な学習を可能とする学習データの拡張が可能となります。
効果
回路設計の工程で、回路から10m離れた場所での電磁波強度を推定する実験において、従来のDeep Learningを用いて672データで学習した場合に推定誤差が+/-16%となるのに対して、開発技術によって学習した場合に推定誤差が+/-2.9%と大幅に軽減できることを確認しました。(図3)
これにより、設計業務における設計候補の絞り込みにシミュレーションの代替として活用できる目途が得られたため、開発技術を活用することで、シミュレーションの工程の短縮に期待ができます。
今後
2019年度中に電磁波解析ソリューション「FUJITSU Technical Computing Solution Poynting」の追加機能として製品化の予定です。さらに、開発技術の実証を進め、様々な業種・業務への展開を検討する予定です。
本リリースの詳細は下記URLをご参照ください。
http://pr.fujitsu.com/jp/news/2018/09/19-4.html
概要:富士通株式会社
詳細は http://jp.fujitsu.com/ をご覧ください。
Copyright 2018 JCN Newswire. All rights reserved. www.jcnnewswire.com
「フジ朝の顔」29歳女子アナ「かわいい」2001年の年賀状写真を公開
57歳クズ芸人「俺はいたって健康優良児だぜ」X投稿にツッコミ殺到「クズの王」「クソだった」
不二家 福袋2025“ペコちゃんお楽しみ福袋”中身ネタバレ実食レビュー
「べらぼう」OPクレジットに現役セクシー女優3人の名前でX「本気度感じた」「攻めた作品」
52歳ジャズサックス奏者が死去と親族がXで伝える 大野雄二バンドなどに参加、後日お別れの会
「べらぼう」綾瀬はるか、ナレーター&おいらん姿で大活躍X「しっぽカワイイ」「小気味よい」
槙野監督の品川CC、森脇良太コーチが誕生!広島、浦和時代の名コンビが神奈川県1部で再結成
イチロー氏、昨年9月の試合に松井秀喜氏を誘った理由を告白 特別番組で対談
「Number_i」への誹謗中傷X投稿の化粧品会社社長が謝罪→投稿削除→廃業も批判止まらず
元宝塚歌劇団娘役の春妃うらら「昨年の春に結婚」「新たな命を授かり」ウエディングドレス姿披露
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
小澤征悦と再婚した桑子真帆アナ(34)黒い過去が流出、衝撃の過去にネット騒然
「格付け」GACKT激怒「バカ舌か!」一発アウトの2人は投稿でも平謝り「こんなはずじゃ…」
吉田沙保里、大久保嘉人との不倫疑惑を一蹴するも冷ややかな声
飲み会で女子アナ自ら男に胸触らせストッキングに手を入れさせていた…女性アナリストが衝撃証言
狩野舞子さんがインスタでWEST.桐山照史との結婚発表
「令和の峰不二子」阿部なつき、バストラインくっきりの白ニット姿がまるで大きな鏡餅!
テラハの岡本至恩逮捕、元カノ 佐藤つば冴のインスタが意味深すぎると話題に
上沼恵美子がフワちゃんの印象語る「無礼やとか敬語使わないとか言うけども…」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
渡辺麻友 (26)、引退の本当の理由が恐ろしすぎると話題に
吉田沙保里、大久保嘉人との不倫疑惑を一蹴するも冷ややかな声
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
グラビア界「1000年に1人の逸材」AVデビューでトレンド入り 初写真集も圧巻ボディー披露
四千頭身、テレビから消えた理由を明かすも批判殺到「人のせいにするな」
小澤征悦と再婚した桑子真帆アナ(34)黒い過去が流出、衝撃の過去にネット騒然
ガスワンのCMに出演中の女性、長澤まさみに似て可愛いと話題に
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
膳場貴子が22日「サンモニ」欠席 TBS駒田健吾アナが事情説明
「フジ朝の顔」29歳女子アナ「かわいい」2001年の年賀状写真を公開
57歳クズ芸人「俺はいたって健康優良児だぜ」X投稿にツッコミ殺到「クズの王」「クソだった」
不二家 福袋2025“ペコちゃんお楽しみ福袋”中身ネタバレ実食レビュー
「べらぼう」OPクレジットに現役セクシー女優3人の名前でX「本気度感じた」「攻めた作品」
52歳ジャズサックス奏者が死去と親族がXで伝える 大野雄二バンドなどに参加、後日お別れの会
「べらぼう」綾瀬はるか、ナレーター&おいらん姿で大活躍X「しっぽカワイイ」「小気味よい」
槙野監督の品川CC、森脇良太コーチが誕生!広島、浦和時代の名コンビが神奈川県1部で再結成
イチロー氏、昨年9月の試合に松井秀喜氏を誘った理由を告白 特別番組で対談
「Number_i」への誹謗中傷X投稿の化粧品会社社長が謝罪→投稿削除→廃業も批判止まらず
元宝塚歌劇団娘役の春妃うらら「昨年の春に結婚」「新たな命を授かり」ウエディングドレス姿披露