TEXT:安藤 眞(ANDO Makoto)
平易に言うと、強度は「壊れるまでどれくらいの力がかけられるか」で、剛性は「ある力をかけたときに、どれくらい撓むか」である。後者はスプリングのばね定数のようなものだと考えれば良い。
話を単純化するため、図のような片持ち式の板ばねの先端を「P」の力で押したとき、先端がどれだけ撓むかを考えてみよう。
実はこれ、材料力学や建築学で最初に学ぶ「片持ち梁」の公式で解くことができる。
計算式は、
となる。
「ヤング率」やら「断面二次モーメント」やら、聞き慣れない言葉が出てきて戸惑うかも知れないが、それより気付いていただきたいのは「式の中に強度に関する要素がひとつも出てきていない」ということだ。同じ条件での比較なら、PとℓとIは一定だ(Iは後述するように、断面の形状でのみ決まる)。すなわち同じ条件で比較した場合、先端のたわみ量δ(=剛性)を左右するのは、ヤング率だけということになる。
では「ヤング率」とは何かというと、「ある試験片を引っ張って1%伸ばすのに、どれくらいの力が必要か」ということ(厳密には「力」ではなく「応力」なので、単位は「Pa」や「kgf/mm^2」になる)。平易にいうと、素材そのものが持っているばね定数のことだ。
そしてこのヤング率、クルマのボディに使用するような圧延鋼板であれば、ほとんどが200〜210GPaの間に収まる。微量元素を入れようが、焼きを入れてマルテンサイト化しようが、ほとんど変わらない。高張力鋼板同士なら、その差はせいぜい1%以下だから、「同じ形状で鋼板のグレードを高めても、剛性はほとんど変わらない」ということなのだ。
では、もうひとつの見慣れない言葉、I=断面二次モーメントとは何なのだろうか。これを正確に説明し始めると難解になるので、ここでは「曲げモーメントに対する変形のしにくさを表す数値」で「断面形状によって一義的に決まる」と理解していただけたら良い。
そして図のような長方形断面では、断面二次モーメントIは、
となる。すなわち曲げ方向に対しては、「厚さの3乗または幅に比例する」ということだ。
ここで、高張力鋼板を使用する理由に立ち戻ってみよう。それは、「素材の強度を高めることで衝突安全性を確保し、その分、板厚を薄くして軽量化を図る」ということだ。すなわち、「高張力鋼板を使う=薄くする」ということで、形状がそのままでは、曲げ剛性は3乗に比例して低下してしまうのだ。
にもかかわらず、高張力鋼板使用率の高まった新型車のボディは、おしなべて剛性が向上している。これは骨格の断面形状を工夫(曲げ方向に対して高さを稼ぐのが効く)し、断面二次モーメントを大きくしたり、骨格配置そのものを改良した結果であり、素材の高張力化はまったく関係がない。