参考文献 1)Jain et al., The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 011002 (2013). https://doi.org/10.1063/1.4812323 2)Curtarolo et al., AFLOW: An automatic frame-work for high-throughput materials discovery. Comput Mater Sci 58, 218–226 (2012). https://doi.org/10.1016/j.commatsci.2012.02.005 3)Kirklin et al., The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10 4)Merchant et al., Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9 5)Barroso-Luque et al., Open materials 2024 (omat24) inorganic materials dataset and models. arXiv preprint arXiv:2410.12771 (2024). https://doi.org/10.48550/arXiv.2410.12771 6)Hayashi et al., RadonPy: automated physical property calculation using all-atom classical molecular dynamics simulations for polymer informatics. npj Comput Mater 8, 222 (2022). https://doi.org/10.1038/s41524-022-00906-4 7)Aoki et al., Multitask machine learning to predict polymer–solvent miscibility using Flory–Huggins interaction parameters. Macromolecules 56, 5446–5456 (2023). https://doi.org/10.1021/acs.macromol.2c02600 8)Wu et al., Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput Mater 5, 66 (2019). https://doi.org/10.1038/s41524-019-0203-2 9)Yamada et al., Predicting materials properties with little data using shotgun transfer learning. ACS Cent Sci 5, 1717-1730 (2019). https://doi.org/10.1021/acscentsci.9b00804 10)Mikami et al., A scaling law for syn2real transfer: How much is your pre-training effective? Machine Learning and Knowledge Discovery in Databases, 477–492 (2023). https://doi.org/10.1007/978-3-031-26409-2_29 11)Ishii et al., NIMS polymer database PoLyInfo (I): an overarching view of half a million data points. STAM-M 4, 2354649 (2024). https://doi.org/10.1080/27660400.2024.2354649