近年、人工知能(AI)の研究が進み、社会のあらゆる分野で、AIが応用されてきています。AIを使ったコンピュータ囲碁プログラムが、プロ囲碁棋士を破ったニュースは記憶に新しいことですし、自動運転の進展など、社会的に関心を集めています。AIは、応用技術としてだけでなく、基礎科学分野でも研究の考え方を変革するようなブレイクスルーを起こしつつあります。固体(氷)、液体(水)、気体(水蒸気)と相を変えるような相転移は、物理学の重要な研究分野ですが、その研究に機械学習注1)を応用する試みがCarrasquilla and Melkoによりなされました(参考論文)。イジングモデル注2)という、スピン系のモデルに、手書き文字の判定に使われる機械学習の手法を応用したものでした。
首都大学東京大学院 理学研究科物理学専攻 椎名拳太 大学院生、森弘之 教授、岡部豊 客員教授と、シンガポール科学技術庁・バイオ情報学研究所の Hwee Kuan Lee (李恵光)主任研究員・部門長は、Carrasquilla and Melko の手法を拡張、一般化して、イジングモデル以外の広い範囲のスピンモデルを扱えるようにすると共に、通常の2次相転移だけでなく、トポロジカル相転移として知られる、Berezinskii-Kosterlitz-Thouless (BKT) 転移注3)の相分類も解析可能にしました。スピン系の相転移の研究に新しいパラダイムを提示して、量子系を含む広い範囲の相転移研究に発展させることが期待されます。
機械学習の代表的な分類の例は、手書き数字の判定で、正解のわかっている多くの訓練データで学習して、新しいテストデータがどの数字であるか判定するものです。さらに、機械学習の手法の一つである、ニューラルネットワーク注4)という分析手法を拡張進化させた深層学習の手法が、精度の高い手書き数字の判定を実現しました。白黒のピクセルの画像としての手書き数字の判定の手法を、イジングモデルのスピン配置による相の判定に応用しようというのが、Carrasquilla and Melko のアイディアです。モンテカルロシミュレーションで生成したイジングモデルのスピン配置から、常磁性相、強磁性相の判定をするもので、従来の系全体の平均量を解析する考え方に対して、新しいパラダイムを提供するものでした。
イジングモデルは、2つの状態しかとらない簡単なモデルですが、もっと複雑なモデルに、Carrasquilla and Melkoの方法を適用することはできません。多数の状態をとるモデルとしてポッツモデルが知られていますが、イジングモデルのときに赤と青が入れ替わっても本質的に同じ状態であったのが、例えば5状態ポッツモデルでは、5色の入れ替えで可能な120通りのスピン配置が本質的に同一の状態となります。それを独立なものとして扱っていたのでは、相の分類の効率が悪くなります。椎名大学院生らは、この問題を解決するために、スピン配置そのものではなく、2つのスピン間の相関に注目して、相関の配置にCarrasquilla and Melkoの方法を適用することを提案しました。離れたスピン間の相関を考えますが、相転移は長距離秩序の問題であるので、その研究にふさわしい量であると言えます。機械学習として、全結合型ニューラルネットワークの方法を用います(概念図を図2に示します)。Google の提供する Tensorflow 注5)と呼ばれる機械学習のライブラリが幅ひろく使われますが、本研究でもそれを使用しています。