富士通・富士通研究所・仏Inria、時系列データの異常検知を行うAIモデルの自動作成技術を共同開発
- 2020年03月17日 14:00:00
- テクノロジー
- JCN Newswire
- コメント
近年、AI技術の発展により、様々なビジネス領域でAIの導入が進んでいます。AIモデルの作成現場では、AI専門エンジニアの人手により作成されることが一般的ですが、試行錯誤を繰り返しながら作り上げるため、多大な工数による現場への導入遅延が懸念されており、作業の自動化が求められています。
今回、Topological Data Analysis(注4)(以下、TDA)技術を用いた富士通研究所独自の時系列データ解析技術(注5)を活用することで、数多くの種類の情報が複雑に絡み合う時系列データの中から異常検知に必要な情報を自動で抽出し、異常検知を行うAIモデルを自動作成する技術を新たに開発しました。本技術の活用により、専門のエンジニアだけでなく一般のエンジニアでも容易にAIによる時系列データの異常検知モデルや分類モデルの作成が可能となるとともに、作業工数も従来の100分の1に削減できるため、様々なビジネス領域におけるAI適用の加速化が期待されます。
開発した技術は、Inriaが開発したTDAのOpen Source Software (以下、OSS)であるGUDHIに実装し、3月16日より無償で公開します。これにより、企業や研究機関などにおけるAI活用を促進するとともに、そのフィードバックを技術改良に継続して反映していくことで、様々なケースで使えるAIモデルの作成を実現します。
なお、本技術は、6月3日(水曜日)から5日(金曜日)までイタリアのパレルモで開催される機械学習の国際会議「AISTATS 2020 (The 23rd International Conference on Artificial Intelligence and Statistics)」にて発表します。
開発の背景
近年、AI技術の発展とともに、様々なビジネス領域へのAI導入のニーズが高まっています。AIの導入には、AIモデルを作成するため、データのどの部分を使用するかを決める特徴量の抽出や使用するアルゴリズムの選定、パラメーターのチューニング、作成したモデルの性能確認といった様々な作業が必要となります。これらの作業は、専門のエンジニアが目的を達成するまで試行錯誤を繰り返しながら人手で行なっているため、現場への速やかな導入を妨げる要因の一つになっています。
課題
現在、AIモデル作成の自動化に関する取り組みは様々な研究機関や企業で行われ、画像・テーブルデータに関しては、異常を検知するモデルの作成に使用する特徴の種類を比較的限定しやすく、解析手法も確立されているため、様々な研究機関や企業で自動化する技術が既に開発されています。一方で、例えばセンサーデータや心拍・脳波などの生体データを含む時系列データに関しては、取り出すデータの時間の長さを色々変えて特徴を取り出す必要があり、かつ、その特徴の種類も多様にあるため、適切な組み合わせを選択しないと目標とする性能を達成できず、AIモデルを自動作成することが困難でした。
開発した技術
今回、時系列データの異常検知に必要な情報を抽出し、異常検知モデルを自動で作成する技術を開発しました。
開発した技術の特長は以下のとおりです。
1. 時系列データの特徴を抽出するアルゴリズムを共同開発
富士通研究所が独自に開発した時系列データ解析技術を用いて、時系列データの異常検知に重要な特徴を抽出するアルゴリズムを富士通研究所とInriaが共同で開発しました。時系列データの中には、短区間に出る特徴と長区間を通して出る特徴があり、それらを適切に取り出す必要があります。また、区分したそれぞれのデータにも振幅や周波数といった特徴があり、統計的な解析手法や周波数解析手法では取り出すことのできない特徴も多くあります。
本アルゴリズムでは、富士通研究所独自のAI技術である時系列データを高精度に分析するDeep Learning技術のもととなっているTDA技術により、区間の長さとその区間における波形状の挙動の特徴を軸とした平面に点としてマッピングすることができます。これにより、区間の長さや挙動の特徴などを俯瞰的に捉えることが可能になります。
2. 特徴平面から異常検知に必要な情報を抽出
(あらかじめ用意しておいた)時系列の学習データのそれぞれに対し、富士通研究所が独自に開発した時系列データ解析技術を用いて各時系列データの特徴をグラフの平面にマッピングします。それらのマッピングされた平面群を俯瞰し、正常データに共通して点が発生する領域や発生しない領域、共通の情報を持たない領域に平面を分割します。その際、各領域内の特徴点の数が同じになるように領域の数や分割の仕方を最適化し、その共通度合いの強さを共通度として計算し、共通度の強い順に領域を抽出します(図3)。
次に未知の時系列データに対して、正常か否か判断するために、入力された未知の時系列データに対し、TDA技術を用いて抽出した特徴点をグラフの平面にマッピングし、マッピングした点が上記で分けられたそれぞれの領域に入る数を数えます。各点が入った領域の共通度を足し合わせた結果が、異常度合いを判定する閾値超えた場合に異常と判断します(図4)。
効果
今回、共同開発した異常検知モデルを自動で作成する技術を用いて以下の検証を行いました。
- 橋梁の内部破損を検知するAIモデル
試験用の模擬橋梁床版(注6)に取り付けた加速度センサーから、壊れるまでの30年分以上に相当する振動データをもとに検証したところ、AI専門のエンジニアが5日間かけて作成したAIモデルと同等の検出性能のモデルを10分で作成。
- 人の脈波データから眠気などの異常状態を検出するAIモデル
AI専門のエンジニアが標準的な手法を用いて4日間かけて作成したAIモデルと比べて平均誤差が10分の1以下のモデルを20分で作成。
本技術では、時系列データの特徴を平面にマッピングする際、特徴を詳細に切り分けているため、作成したAIモデルが想定外の結果を検出した場合でも、その情報を反映させて各領域の共通度を修正することができ、容易に目的に即したモデルへ修正することが可能です.
今後
本技術は、Inriaが開発したTDAのOSSであるGUDHIに実装させ、3月16日より無償で公開します。これにより富士通とInriaだけでなく、企業や研究機関などに向けて時系列データへのAI活用を促進し、そこで得られたフィードバックを基にGUDHIのOSSコミュニティと連携しながら技術改良を継続していきます。
また、富士通研究所は、今後、本技術を富士通のAI技術「FUJITSU Human Centric AI Zinrai(ジンライ)」に活用していきます。
本リリースの詳細は下記をご参照ください。
https://pr.fujitsu.com/jp/news/2020/03/16.html
概要:富士通株式会社
詳細は http://jp.fujitsu.com/ をご覧ください。
Copyright 2020 JCN Newswire. All rights reserved. www.jcnnewswire.com
【プレミア12】清水達也「完全にまぐれ。長年の勘で」無死満塁からミラクルキャッチ無失点火消し
【プレミア12】侍ジャパンの「全勝優勝」トレンド入り 連覇をかけて24日の決勝・台湾戦へ
【天皇杯】G大阪6度目Vならず、神戸との差を痛感「力不足」中谷進之介 宇佐美貴史の欠場響く
【11月24日生まれの著名人】yukihiro、山岸理子、池内博之、古村比呂ら
【プレミア12】侍ジャパンが決勝“前哨戦”制す 大会連覇まであと1勝。乱打戦を制し無傷の8連勝
【明治神宮大会】早大・印出太一主将「徳武さんは相当怒ったと思う」タイブレークで敗れる
ラオスで外国人旅行客の中毒死疑い相次ぐ 酒にメタノール混入か
【プレミア12】辰己涼介、決勝の台湾戦へ珍発言「負けたらピッチャー転向。俺のための大会に」
フィンエアー、パイロットがストライキ実施 12月9日と13日に約300便欠航
【プレミア12】TBS解説の前田健太が北山亘基の投球フォーム絶賛「ねじれを上手に作れる」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
ガーシーが綾野剛のLINE公開でネット騒然「ショック」「すごいエンタメ」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
俳優・火野正平さん死去 75歳 腰を骨折し体調崩す
斎藤元彦・前知事の再選確実 兵庫県知事選、失職から返り咲き
3刷目の重版決定!榎原依那のファースト写真集「Inaism」から、完全未公開カットをご紹介♡
小池里奈「超むっっっっっちむち」美バスト輝く黒ブラジャー近影に称賛「色気が増してる」
岡田将生が高畑充希との結婚発表
三浦瑠璃氏、斎藤元彦氏再選に「一番の敗者は当然、マスコミです」と私見
「スケスケ水着美尻」35歳女芸人のセミヌード写真展が大阪でも12月開催決定「本当に最後」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
ガーシーが綾野剛のLINE公開でネット騒然「ショック」「すごいエンタメ」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
四千頭身、テレビから消えた理由を明かすも批判殺到「人のせいにするな」
ユーチューバーもこう氏、元彼女・成海瑠奈について赤裸々告白
父が再婚の丸山隆平(36)現在の家族関係がとんでもないことになっていたと話題に
3時のヒロイン福田麻貴(32)は元アイドルだった!昔の姿がかわいいとヲタク歓喜
たぬかな、「あのチビやろ?」迷惑系黒人YouTuberへの苦言が物議
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
「愛が生まれた日」藤谷美和子(56)の現在がヤバい!?徘徊生活を送っていた過去も明らかに。
【プレミア12】清水達也「完全にまぐれ。長年の勘で」無死満塁からミラクルキャッチ無失点火消し
【プレミア12】侍ジャパンの「全勝優勝」トレンド入り 連覇をかけて24日の決勝・台湾戦へ
【天皇杯】G大阪6度目Vならず、神戸との差を痛感「力不足」中谷進之介 宇佐美貴史の欠場響く
【11月24日生まれの著名人】yukihiro、山岸理子、池内博之、古村比呂ら
【プレミア12】侍ジャパンが決勝“前哨戦”制す 大会連覇まであと1勝。乱打戦を制し無傷の8連勝
【明治神宮大会】早大・印出太一主将「徳武さんは相当怒ったと思う」タイブレークで敗れる
ラオスで外国人旅行客の中毒死疑い相次ぐ 酒にメタノール混入か
【プレミア12】辰己涼介、決勝の台湾戦へ珍発言「負けたらピッチャー転向。俺のための大会に」
フィンエアー、パイロットがストライキ実施 12月9日と13日に約300便欠航
【プレミア12】TBS解説の前田健太が北山亘基の投球フォーム絶賛「ねじれを上手に作れる」