連続可変の名称どおり、VVTはエンジン運転中、常に作動している。進角側の油圧と遅角側の油圧をバランスさせ、バルブの開閉タイミングを自在に動かしているのだ。つまり、エンジン油圧がかからない状態では、一定の位置に止めておくことができない。そこで、機械的にロックすることで、作用角の中間位置で保持できるようにした。これが中間ロックだ。これならば、エンジン停止前に中間ロックを働かせ始動に最も適したカムタイミングにしておけるとともに、エンジン始動後は遅角側にも進角側にもVVTを働かせることができる。
かつては困難で夢物語だと思われていたことも、実現してしまえばもっと多くを要求し始めるのは世の常。中間ロック機構で始動時のエミッション対策とアイドル安定を両立できると、さらに遅角方向に作用角を拡大してほしいという要望が寄せられる。吸気バルブの遅開き~遅閉じ、つまりミラーサイクルの実現だ。
アイシン精機の小林昌樹氏率いる動弁第3チームは、当初は従来の機構を用いて制御で解決する方法を模索したが、結果、中間ロック機構をふたつ備えることで機能を満足させた。ひとつ目は、冷間始動時に有効なポジション、そしてもうひとつは最遅角側で遅開き/閉じを実現するポジションだ。
エンジンが停止するなど、VVTへの供給油圧が充分でないときにも安定したバルブタイミングを得るために、ロックキーによって締結する。万一、エンジン停止時にロックポイントにキーが収まらなかったとしても、カムを回転させたときにロックキーがワンウェイでポイントに収まるように、ラチェット機構を採用している。
シングルポイント(SP:左)とマルチポイント(MP:右)を比較すると、SPに対し作用角が増えたことがわかる。この増加分がミラーサイクル領域である。MPの作用角のポテンシャルは最大90°CA(クランクアングル)。小林氏は、現状で要求される性能はほぼ満足できるという。MPがSPにロックポイントをひとつ増やした構造であることもわかるだろう。
SP中間ロックVVTは吸排気バルブオーバーラップをねらったタイミング(ABDC:下死点後40~60°CA:クランクアングル付近)で固定し、始動時のHC排出量を40%も低減する。大変換角中間ロックVVTは、ABDC 90~110度付近まで作用角を拡大。冷間始動時のHC低減とミラーサイクルによる燃費向上を両立させた。また最遅角に2ndロックを備えることでハイブリッド車のエンジン再始動時振動低減も狙える。中間ロック位相=1stロックをABDC 80~90°CA付近に設定し、エミッションより始動時も含めた燃費を優先する場合もある。