TEXT:安藤 眞(ANDO Makoto)
高強度材と言っても“鉄系”である以上、比重は7.85g/cm^3と変わらない。鋼材にはニッケルやクロム、マンガンやシリコンなど鉄以外の元素が含まれているが、いずれも1%に満たないから、比重に影響を与えるほどではない。熱処理による高強度化も比重とはまったく関係がないから、材料そのものを軽くすることはできない。
となると、鋼材を使ったコイルスプリングを軽量化するには、体積そのものを小さくするほかはない。それには、線径(素材線の太さ)を細くするか、巻き径を小さくするか、巻き数を減らすか、である。
ところが、これらはいずれも、ばね定数に影響を与えてしまう。
コイルスプリングのばね定数kの計算式は、
だから、たとえば線径を細くすれば、ばね定数は低下してしまい、必要なばね定数を維持するには、分母(巻き数か巻き径)も小さくする必要が生じる。
ここで勘の良い人なら、「巻き数か巻き径も減らせるなら、軽量化が上乗せされて良いではないか」ということに気付くと思う。ところが、そううまくはいかない。巻き数や巻き径を減らせば、応力が高くなってしまうからだ。
こちらも式を使って考えてみよう。コイルスプリングの応力τを求める式は、
Pは想定荷重だから、ばね定数k × 想定最大ストロークδmax(ややこしくなるので単にδとする)に置き換えられる。kに最初の式を代入して整理すると、
巻き数や巻き径は分母だから、これらが小さくなれば応力が高くなることはひと目でわかる。
式が苦手な人ならば、現象を想像しながら考えると理解しやすい。
コイルスプリングはその動きを見ると、全体が伸び縮みしているように見える。しかし、断面を切り出してみると、実際にはほとんどの力を「捩り」で受けている。すなわち、トーションバースプリングと同じである。
トーションバーを軽くするには、径を細くするか、長さを短くするかのどちらかしかない(中空化もできるがコストが高い)。コイルスプリングの巻き数や巻き径を減らすのは、後者とまったく同じこと同じだ。
そして使用するクルマが同じなら、サスペンションストロークは変わらないから、トーションバーは短くなった分、断面当たり余計に捩られることになる。となれば、応力は当然、高くなることが想像できると思う。
応力が高くなれば、材料の疲労強度を高めないと壊れてしまうのは自明。そこで必要となるのが高強度材なのだ。逆から言うと、材料の高強度化を進めれば、コイルスプリングの線径も巻き径も小さくできるようになり、体積が減って軽量化につながる、ということなのだ。