世界初、光コヒーレント伝送方式のための新しい受信方式を開発
国立研究開発法人情報通信研究機構(NICT)
世界初、光コヒーレント伝送方式のための新しい受信方式を開発
~複雑で精密な光回路が不要、光の強度情報のみから位相情報を回復する~
【ポイント】
■ 効率的に大容量通信を実現する光コヒーレント伝送方式のための新しい受信方式を開発
■ NICT独自のデバイス技術と信号処理技術を組み合わせて光受信回路をシンプルに
■ 将来の100Gアクセスに向けたシンプルな超小型光受信機の実現に期待
国立研究開発法人情報通信研究機構(NICT、理事長: 徳田 英幸)ネットワークシステム研究所は、独自に開発した高速集積型受光素子と位相回復信号処理アルゴリズムを用いた、新たな光コヒーレント受信方式の実証実験に世界で初めて成功しました。現在、長距離系光ファイバ通信網で利用されている光コヒーレント受信機には、高精度な光源と複雑で精密な光回路が必要ですが、今回は、この複雑な光回路を用いる代わりに、受光素子を二次元に配置した集積型受光デバイスを用い、散乱させた光信号を画像的に受信し、位相回復信号処理を施すことで、光コヒーレント受信に成功しました。これにより、光回路を大幅にシンプルにすることができました。位相回復技術は、これまで、天文などの物理学の分野で知られていましたが、今回、光通信に特化したアルゴリズムを開発し、初めて、実際の大容量通信実験に成功しました。
本成果により、光源や複雑で精密な光回路が不要で、超小型でシンプルな光コヒーレント受信機が実現可能となり、受信機の小型化が求められる光アクセス網の大容量化が期待できます。
【背景】
現在、通信事業者等の長距離系光ファイバ通信網では、光の強度と位相に情報を乗せる光コヒーレント伝送により、毎秒100Gビットを超える大容量通信を実現しています。さらに、FTTHなど身近な光アクセス網でも光コヒーレント伝送の導入が検討されています。しかし、光信号の受信に用いられる受光素子は、光の強さ(強度情報)は検出できますが、位相は検出できないため、光コヒーレント方式信号の受信には、高精度な光源や複雑で精密な光回路が必要となります。そのため、受信機の小型化が求められる光アクセス網では、光コヒーレント伝送の導入が進んでいませんでした。
【今回の成果】
今回NICTは、新たに開発した位相回復信号処理アルゴリズムと2017年に開発した超小型かつ高速な二次元集積型受光素子を組み合わせることで、受信機内の光回路を大幅に削減し、シンプルにする「位相回復型コヒーレント受信方式」を提案し、その実証実験に、世界で初めて成功しました(図1参照)。
【画像: https://kyodonewsprwire.jp/img/201904245777-O1-5IUGAxVv 】
図1 位相回復型コヒーレント受信方式のイメージ図
本方式の構成要素は、以下のとおりです。
・受信した光の位相を二次元的な強度パターンに変換する散乱体
・散乱体で変換された強度パターンを一括受光する二次元集積型受光素子
・強度パターンから光の位相を逆算する位相回復信号処理アルゴリズム
位相回復技術は天文などの物理学の分野で知られていますが、計算量の大きさなどから、高速光通信へは応用されてきませんでした。今回、新しく開発したアルゴリズムでは、光位相変調信号の限られた位相状態に着目し、その計算量を大幅に削減することができました。本実験では、毎秒40Gビット相当の偏波多重QPSK信号を伝送し、位相回復型コヒーレント受信に成功しました。
なお、本実験の結果は、米国サンディエゴで3月に開催された光ファイバ通信関係最大の国際会議の一つである第42回光ファイバ通信国際会議(OFC2019)で非常に高い評価を得て、最優秀ホットトピック論文(Post Deadline Paper)として採択され、現地時間3月7日(木)に発表しました。
【今後の展望】
今後は、16QAMといった、より複雑な波形を持つ光信号の復調や、より効率的な散乱体の設計など、信号処理技術・デバイス技術の両面から、位相回復型コヒーレント受信方式の実用性の向上に取り組んでいきます。
今回開発したコヒーレント受信方式は、光ファイバ通信のみならず、高精度な光測距や大容量の空間光無線通信など、超小型化が求められる身近な光ICTシステムへの多様な応用も期待されます。
サンド伊達みきお、今も賃貸生活続けている「理由」を告白「僕の中では…」
【ヤクルト】宇垣美里がワインドアップでノーバン始球式 「100点」と公園トレの成果発揮
和田アキ子「小泉さん、知らない仲ではないが、のど通られへん」備蓄米おにぎり試食の重圧
ヘソ出し美女「NHKのど自慢」降臨 美スタイル&美声も披露「さすが元アイドル」「歌上手い」
【DeNA】あれ…?バウアーがタイガーマスク襲名?粋な計らいでマスクかぶりノリノリ記念撮影
手塚理美、7月に所属事務所を退所「その先は考えてません。良き良き」 64歳の誕生日も報告
上沼恵美子「医者の診断はうれしいな」橋幸夫の芸能活動継続に言及
152メートル満塁弾、メジャーとマイナー含め今季最長飛距離の本塁打をRソックス有望株が記録
57歳女優「スナック好き」告白 同伴したモノマネ芸人2人の実名に博多大吉が反応
水を入れずに米を炊くとどうなる?炊飯器のうっかりミスで「放心状態になった」
長嶋一茂、「家族としてお許しいただきたいけれど…」妹・三奈さんらとの病室での会話明かす
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
ヒカル、浮気相手とのLINE流出にドン引きの声「キモすぎる」「吐きそう」
小倉優子、不自然な“二重ライン”にネット騒然「やっぱり整形?」
藤本美貴、夫・庄司智春がしていたら「結婚しなかったと思う」“習慣”を発表
武田鉄矢、昨年死去した大物俳優をライバル視していた「1人だけ、ライバルと思った人がいた」
あのちゃん実名告白「めんどくさい芸能人」が台本と違いスタジオ騒然
元NMBの上西怜さんが着こなすランジェリー、“あざとカワイイ”ビジュアル大量公開!
西田ひかる「なんとかならなかったのかな」コンビニ備蓄米視察で小泉農相「大きなうねり」発言に
大谷翔平の長女へ、ロバーツ監督がピンクの〝ポルシェ〟プレゼント 昨年は大谷がミニポルシェ贈る
父が再婚の丸山隆平(36)現在の家族関係がとんでもないことになっていたと話題に
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
ヒカル、浮気相手とのLINE流出にドン引きの声「キモすぎる」「吐きそう」
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
ガーシー、佐野ひなこの暴露を示唆でネット騒然「ファンだったのに」
【おすすめアニメ50選】完結済み!定番から最新作まで!
「名探偵コナン」最大の謎、蘭姉ちゃんのあの角の正体がついに判明
浜崎あゆみ、バスト丸見えの投稿にネット騒然「巨乳すぎて不自然」
長嶋一茂、「家族としてお許しいただきたいけれど…」妹・三奈さんらとの病室での会話明かす
小澤征悦と再婚した桑子真帆アナ(34)黒い過去が流出、衝撃の過去にネット騒然

サンド伊達みきお、今も賃貸生活続けている「理由」を告白「僕の中では…」
【ヤクルト】宇垣美里がワインドアップでノーバン始球式 「100点」と公園トレの成果発揮
ヘソ出し美女「NHKのど自慢」降臨 美スタイル&美声も披露「さすが元アイドル」「歌上手い」
和田アキ子「小泉さん、知らない仲ではないが、のど通られへん」備蓄米おにぎり試食の重圧
【DeNA】あれ…?バウアーがタイガーマスク襲名?粋な計らいでマスクかぶりノリノリ記念撮影
手塚理美、7月に所属事務所を退所「その先は考えてません。良き良き」 64歳の誕生日も報告
上沼恵美子「医者の診断はうれしいな」橋幸夫の芸能活動継続に言及
152メートル満塁弾、メジャーとマイナー含め今季最長飛距離の本塁打をRソックス有望株が記録
57歳女優「スナック好き」告白 同伴したモノマネ芸人2人の実名に博多大吉が反応
水を入れずに米を炊くとどうなる?炊飯器のうっかりミスで「放心状態になった」