窒化ニオブを用いた磁性ジョセフソン素子を世界で初めて実現
国立研究開発法人情報通信研究機構(NICT)
窒化ニオブを用いた磁性ジョセフソン素子を世界で初めて実現
~超伝導量子コンピュータの新たな基本素子として期待~
【ポイント】
■ 窒化ニオブを用いて、低損失で、より冷却が容易な磁性ジョセフソン素子を開発
■ 外部から電流や磁場を加えずに、巨視的位相が自ら180°ねじれた状態を発現
■ 開発した磁性ジョセフソン素子をデバイスに組み込むことで大幅な消費電力の削減
国立研究開発法人情報通信研究機構(NICT、理事長: 徳田 英幸)の山下太郎主任研究員らの研究グループは、今回、世界で初めて、窒化ニオブを用いた窒化物超伝導体による新奇な磁性ジョセフソン素子の開発に成功しました。
ジョセフソン素子を用いた超伝導デバイスの動作には、外部から電流や磁場を加えて巨視的位相のねじれを発生させることが必要不可欠です。今回開発した磁性ジョセフソン素子では、巨視的位相が自らねじれた状態を実現することができるため、従来必要であった電流や磁場を大幅に削減することができ、超伝導量子コンピュータをはじめとする様々な超伝導デバイスの高性能化に向けて大きなブレークスルーとなるものです。
本研究成果は、11月14日付け(現地時間)の米国科学誌Physical Review Appliedに掲載されました。なお、本成果の一部は、JSTさきがけ(JPMJPR1669)の一環として得られたものです。
【背景】
次世代のデバイスとして超伝導量子コンピュータや低消費電力回路が注目されており、超伝導デバイスの開発が進められています。通常、ジョセフソン素子を利用した超伝導デバイスでは、ジョセフソン素子の「巨視的位相」にねじれを発生させるために、外部から電流や磁場を加える必要があり、消費電力の増加や外来ノイズの原因となっていました。それに対し、磁性ジョセフソン素子は、巨視的位相が自ら180°ねじれた「パイ状態」を発現します。そのため、磁性ジョセフソン素子を超伝導回路に組み込むことで、巨視的位相にねじれを生じさせるのに必要な電流や磁場を大幅に削減でき、超伝導デバイスの大規模化が容易になります。
これまで磁性ジョセフソン素子として、超伝導体にニオブを用いた素子が報告されていました。しかし、より超伝導転移温度の高い窒化ニオブを用いることで、冷却に必要な電力を削減することができます。また、窒化ニオブや窒化チタン等の窒化物超伝導体は、超伝導量子コンピュータの低損失な超伝導材料として注目されているため、これらを用いた磁性ジョセフソン素子の実現が期待されていました。
一方で、コヒーレンス長が短い窒化ニオブで磁性ジョセフソン素子を実現するには、接合界面のより精密な制御が必要なことから、その作製は困難でした。
【今回の成果】
今回、我々は酸化マグネシウム基板上に結晶配向成長し、表面平滑性に優れた窒化ニオブ薄膜を用いることで、接合界面の精密な制御を行い、窒化物超伝導体による「パイ状態」磁性ジョセフソン素子を世界で初めて実現しました。
厚さの異なる磁性層を持つ複数個の素子を作製し、ジョセフソン臨界電流を測定した結果、磁性層がある膜厚範囲にある素子で、図2に示すように、巨視的位相が180°ねじれるパイ状態を発現していることを実験的に確認しました。
通常のジョセフソン素子では、位相のねじれがない「0状態」が安定で、ジョセフソン臨界電流は温度上昇に対して単調に減少しますが、磁性ジョセフソン素子では、磁性層の厚さや動作温度に対して、0状態とパイ状態が変化します。状態が変わるポイント(転移点)では、ジョセフソン臨界電流の温度依存性に、磁性ジョセフソン素子に特有のディップ構造が現れます。我々は、ジョセフソン臨界電流の温度依存性において、明瞭なディップ構造の観測に成功しました(図3参照)。これにより、我々の作製した磁性ジョセフソン素子において、確かにパイ状態が生じていることを実証しました。
パイ状態では巨視的位相のねじれが生じているため、例えば、超伝導体のリングに磁性ジョセフソン素子を組み込むと、外部から電流や磁場を与えなくてもリング中に自ら電流が流れます。
将来的には開発した素子を超伝導量子コンピュータや超伝導集積回路に組み込むことにより、巨視的位相制御に必要な外部電流やミリテスラレベルの磁場の大幅な削減が可能になり、消費電力や外来ノイズの低減に大きく寄与することが期待できます。
【今後の展望】
今後は、超伝導量子コンピュータや超伝導集積回路における従来のジョセフソン素子を、今回開発した窒化物超伝導体を用いた磁性ジョセフソン素子で置き換えることで、より大規模化が容易な超伝導量子コンピュータや、更なる低消費電力動作が可能な超伝導集積回路の実現を目指します。
長嶋一茂、重度の鬱になったことを衝撃告白 精神安定剤を「1度も手放したことはない」
山本由伸、ターコイズカラーのヴィトンバックで遠征出発「さわやかな色!」5日先発で9連勝へ
関西テレビ社長が辞任表明 中居氏の性暴力問題で人権意識欠如と指摘
ヤンバルクイナの体内に車のタイヤ片 餌のミミズを通して取り込みか
長嶋一茂「魚雷バット」で持論きっぱり 大谷翔平使用是非めぐるSNSコメに「本人が決めること」
韓国の尹前大統領が談話「期待に添えず残念」 罷免決定を受け
八代英輝弁護士、滋賀県の冷凍庫遺体事件めぐり 発見なら「困ってしまう状況」が背景との見方
中居問題で責任指摘のカンテレ大多亮社長が退任へ トラブル当時フジ専務
【岡山】今季無敗のホームで連敗阻止へ 木山隆之監督「力を振り絞って勝ちにいく」6日に東京戦
UCC「初代缶コーヒー」が令和に復刻 1970年大阪万博で大ヒットした“あの味”再び
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
「中居正広」Xトレンド入り、第三者委員会の調査報告書にツッコミ殺到「こりゃ酷い」の声
中居正広氏、14年前に脳科学者が「女性におぼれて芸能界追放」と“予言” X騒然「すごい」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
有吉弘行、「感謝祭」で永野芽郁に暴走突撃の江頭2:50について“たったひと言”で言及
笠井信輔アナ、飲食店で隣席の女性に叱責され謝ったのに「自らのストレスを他人に向けて…」
「もう会えなくなるけど、こんな女がいたことも忘れないでね」ヒコロヒー“永久出禁”受け吐露
伝説のロックバンドドラマー、中居正広氏めぐるテレビ番組報道に「ハッキリ言います!」
日清食品どん兵衛CM、「アンミカ起用」で不買運動の動き
中居正広氏「ひと段落かな」B氏「動きます」女性A退職時の文面公開されX「最悪」「ヘド出る」
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
堀江貴文氏、炎上ストリートピアノ騒動に“たった5文字”で反応しX賛同多数
「中居正広」Xトレンド入り、第三者委員会の調査報告書にツッコミ殺到「こりゃ酷い」の声
楽しんご、銭湯での男性へのわいせつ行為で逮捕された中孝介容疑者に“8文字”でずばり私見
中居正広氏、14年前に脳科学者が「女性におぼれて芸能界追放」と“予言” X騒然「すごい」
【おすすめアニメ50選】完結済み!定番から最新作まで!
万引き逮捕の米田哲也容疑者を「ご親族かどなたか助けてあげられないのか」紀藤正樹氏「悲しい」
堺正章が60歳タレントと“禁断の”共演「確かに昔干したよ」「本気でした」激白しスタジオ騒然
【ネタバレ?】史実で見るキングダムの今後の展開まとめ〜中華統一までの全体像

長嶋一茂、重度の鬱になったことを衝撃告白 精神安定剤を「1度も手放したことはない」
山本由伸、ターコイズカラーのヴィトンバックで遠征出発「さわやかな色!」5日先発で9連勝へ
関西テレビ社長が辞任表明 中居氏の性暴力問題で人権意識欠如と指摘
ヤンバルクイナの体内に車のタイヤ片 餌のミミズを通して取り込みか
長嶋一茂「魚雷バット」で持論きっぱり 大谷翔平使用是非めぐるSNSコメに「本人が決めること」
韓国の尹前大統領が談話「期待に添えず残念」 罷免決定を受け
八代英輝弁護士、滋賀県の冷凍庫遺体事件めぐり 発見なら「困ってしまう状況」が背景との見方
中居問題で責任指摘のカンテレ大多亮社長が退任へ トラブル当時フジ専務
【岡山】今季無敗のホームで連敗阻止へ 木山隆之監督「力を振り絞って勝ちにいく」6日に東京戦
UCC「初代缶コーヒー」が令和に復刻 1970年大阪万博で大ヒットした“あの味”再び