NEC、従来技術の半分の学習データ量でも高精度に識別可能なディープラーニング技術を開発
- 2019年08月19日 14:00:00
- テクノロジー
- JCN Newswire
- コメント
識別精度の向上には、識別が難しい学習データをより多く学習することが有効ですが、学習に適した質の良いデータを十分に確保することが重要です。本技術は、ニューラルネットワーク(注1)の中間層で得られる特徴量を意図的に変化させることで、識別が難しい学習データを集中的に人工生成します。これにより、少ない学習データ量でも識別精度を大きく向上させ、ディープラーニングを適用したシステムの開発期間短縮に貢献します。
具体的には、ディープラーニング技術の適用に必要な学習データ量を半分程度に削減します。また本技術は、データの種類を問わず汎用的に適用可能であることから、専門家による調整が不要になります。これにより従来、学習データ収集時間やコストの高さが阻害要因となっていた製品の外観検査やインフラ保全など、さまざまなシステムの早期立ち上げを可能にします。
NECグループは、安全・安心・効率・公平という社会価値を創造する「社会ソリューション事業」をグローバルに推進しています。当社は、先進のICTや知見を融合し、人々がより明るく豊かに生きる、効率的で洗練された社会を実現していきます。
背景
近年、ディープラーニング技術は画像・音声認識を主体に飛躍的な発展を遂げ、セーフティ、ものづくり、インフラ保全など幅広い分野での活用が広がっています。例えばものづくりの分野では、製品の外観検査において、人材確保が難しい熟練検査員をカメラによる画像認識で代用したいという要望があります。外観検査をディープラーニングで行うには不良品データを学習する必要がありますが、発生頻度の低い不良品は大量に得ることが難しいため、不良品データの収集や不良品を模擬したデータ作成に多大な時間とコストを要していました。
このような問題に対し、従来はデータ拡張(注2)と呼ばれる、学習データを意図的に加工・変形させることでデータ量を人工的に増やす手法が用いられていましたが、識別精度を高める効果的な学習データの生成までには至っていませんでした。さらに、対象のデータ種類に応じて専門家がデータの増やし方を調整する必要があるため、様々な種類のデータに短期間に適用することは困難でした。
本技術の特長
1. 必要となる学習データを従来技術に比べ半分に削減
識別精度の向上には、識別が難しい「苦手な学習データ」をより多く学習することが有効であると広く知られています。データ拡張と呼ばれる従来技術では、ニューラルネットワークに入力する前にデータを意図的に加工・変形させ、学習データ量を人工的に増やしていました(例えば画像に対しては、回転や拡大・縮小、ノイズの付加など)。しかし、このような増やし方では、「苦手な学習データ」の量が不十分で、かつ識別精度向上に寄与しないデータも多く生成され、十分な学習効果が得られませんでした。
本技術は、ニューラルネットワークの中間層で得られる特徴量を意図的に変化させることで、識別が失敗しやすい「苦手な学習データ」を集中的に人工生成し識別精度を高めます。本技術を公開データベース(手書き数字認識:MNIST、物体認識:CIFAR-10(注3))にて評価し、学習データ量が半分でも従来技術と精度が変わらないことを確認しました。
2. データの種類の違いによる専門家の調整が不要
従来のデータ拡張では、データの種類毎にデータの生成方法を変える必要がありました。例えば、画像では大きさや回転角度など、音声では声の高さや話す速さなどを変えることでデータを人工的に増やしていました。さらに、専門家がデータ生成方法を慎重に選び、学習に悪影響を及ぼすデータが発生しないよう調整する必要がありました。
本技術は、ニューラルネットワーク内部の数値に基づいて自動的に学習データを生成するため、多様なデータに対して汎用的かつ効率良く適用することができ、専門家による調整を不要にします。
なお、今回の成果に関してニューラルネットワークの国際会議「International Joint Conference on Neural Networks」(IJCNN2019、期間:2019年7月14日(日)~19日(金)、場所:ハンガリー・ブダペスト)において、7月15日(月)に発表しました。(https://www.ijcnn.org/)
本リリースの詳細は下記をご参照ください。
https://jpn.nec.com/press/201908/20190819_02.html
概要:日本電気株式会社(NEC)
詳細は www.nec.co.jp をご覧ください。 Copyright 2019 JCN Newswire. All rights reserved. www.jcnnewswire.com
【プレミア12】極めて異例、台湾が不可解な予告先発変更「スポーツマンシップに反する」日本反論
11月から「とりの日パック」が変わる!改善か改悪か…節約主婦がコスパを検証
【明治神宮大会】敦賀気比9回に追いつくも、延長11回タイブレークの激闘の末敗れる
「まさに伝説!」大谷翔平とエンゼルスのレジェンドが懐かしの2ショット MLB公式Xが公開
【プレミア12】日本の決勝の相手が台湾に決まった理由 日本-台湾は23日、24日の2連戦
【楽天】「FRESH ZIPPER」がダンス披露 古謝樹「一番いいパフォーマンスができた」
HiHi Jets作間龍斗、単独主演舞台で岡山弁操る “岡山の奇跡”桜井日奈子が太鼓判
フィンエアー、ヨーロッパ行きでスペシャルオファー 総額13万円台から
【なにっ!?ベビースターのための専用ワインだと!?】「BookRoad~葡蔵人~produced by ベビースター」販売
両津勘吉のアクションドールをお世話する2歳女児 「両さん愛が止まらない」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
ガーシーが綾野剛のLINE公開でネット騒然「ショック」「すごいエンタメ」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
俳優・火野正平さん死去 75歳 腰を骨折し体調崩す
斎藤元彦・前知事の再選確実 兵庫県知事選、失職から返り咲き
3刷目の重版決定!榎原依那のファースト写真集「Inaism」から、完全未公開カットをご紹介♡
小池里奈「超むっっっっっちむち」美バスト輝く黒ブラジャー近影に称賛「色気が増してる」
岡田将生が高畑充希との結婚発表
三浦瑠璃氏、斎藤元彦氏再選に「一番の敗者は当然、マスコミです」と私見
「スケスケ水着美尻」35歳女芸人のセミヌード写真展が大阪でも12月開催決定「本当に最後」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
ガーシーが綾野剛のLINE公開でネット騒然「ショック」「すごいエンタメ」
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
四千頭身、テレビから消えた理由を明かすも批判殺到「人のせいにするな」
ユーチューバーもこう氏、元彼女・成海瑠奈について赤裸々告白
父が再婚の丸山隆平(36)現在の家族関係がとんでもないことになっていたと話題に
3時のヒロイン福田麻貴(32)は元アイドルだった!昔の姿がかわいいとヲタク歓喜
たぬかな、「あのチビやろ?」迷惑系黒人YouTuberへの苦言が物議
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
「愛が生まれた日」藤谷美和子(56)の現在がヤバい!?徘徊生活を送っていた過去も明らかに。
【プレミア12】極めて異例、台湾が不可解な予告先発変更「スポーツマンシップに反する」日本反論
11月から「とりの日パック」が変わる!改善か改悪か…節約主婦がコスパを検証
【明治神宮大会】敦賀気比9回に追いつくも、延長11回タイブレークの激闘の末敗れる
「まさに伝説!」大谷翔平とエンゼルスのレジェンドが懐かしの2ショット MLB公式Xが公開
【プレミア12】日本の決勝の相手が台湾に決まった理由 日本-台湾は23日、24日の2連戦
【楽天】「FRESH ZIPPER」がダンス披露 古謝樹「一番いいパフォーマンスができた」
HiHi Jets作間龍斗、単独主演舞台で岡山弁操る “岡山の奇跡”桜井日奈子が太鼓判
フィンエアー、ヨーロッパ行きでスペシャルオファー 総額13万円台から
【なにっ!?ベビースターのための専用ワインだと!?】「BookRoad~葡蔵人~produced by ベビースター」販売
両津勘吉のアクションドールをお世話する2歳女児 「両さん愛が止まらない」