オムロン株式会社(本社:京都市下京区、代表取締役社長CEO:山田義仁)の子会社として近未来デザインの創出を目指す、オムロン サイニックエックス株式会社(本社:東京都文京区、代表取締役社長:諏訪正樹、以下OSX)のプリンシパルインベスティゲーターの米谷竜、シニアリサーチャーの谷合竜典(以下、米谷・谷合)らの研究グループは、自動走行ロボットなどが移動経路を計画するアルゴリズムにAIの技術領域の一つである機械学習を用いることで、飛躍的に経路計画性能を向上させる経路探索アルゴリズムを開発しました。本アルゴリズムでは、過去の経路計画から学習により経路を導き出すことで、経路計画に必要な移動環境の認識や経路探索の効率を向上させることができます。本研究の詳細は、7月18日より開催される機械学習分野における国際会議「International Conference on Machine Learning (以下、ICML) 2021」にて発表を行います。
「ICML」は世界中の研究者が参加し議論が行われる国際会議で、「NeurIPS*1」「ICLR*2」とならび、機械学習分野において国際的に権威のあるトップカンファレンスの一つです。2021年は5,000件を超える投稿の中から、およそ22%の論文が採択されています。 *1:Neural Information Processing Systems *2:International Conference on Learning Representations
【画像:https://kyodonewsprwire.jp/img/202107137582-O3-Qh5GTeE6】 ベンチマークによる性能検証結果 ・黒色が障害物を表し、灰色の中でスタート地点からゴール地点までの経路探索を行います。 ・赤が経路探索結果を示しており、従来手法に比べ最適な経路で探索できていることが分かります。 ・緑が探索をおこなった領域を示しており、緑の範囲が少ないほど、探索効率が高いことを表すため、A*探索および従来手法よりも探索効率が高いことが分かります。 従来手法1:最良優先探索法 従来手法2:Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., and Dey, D. Data-driven planning via imitation learning. The International Journal of Robotics Research (IJRR), 37(13-14):1632–1672, 2018.