■「何から学んだか」を示す手法 WIK この観点により、我々の研究チームはAIが「これまで学習した中で、今回対象とするデータに一番近いもの」を示す手法を開発しました。我々はこの手法を、AIが「私の知っていること」を提示するという意味で What I Know(WIK)と名付けました。この手法を用いれば、AIモデルが工場におけるベテラン工員のように信頼できるものなのか、もしくは新人工員のように経験に乏しく、その判断は信頼できないと考えられるのか、判断することができます。これまでの説明可能AIは、「入力データからどのように予測が導かれるのか」というプロセスに注目したものが中心でした。 本研究で開発した手法は、学習データに注目した点が従来の手法と大きく異なり、AIに詳しくない人であってもAIの予測結果が信頼できるかどうかを、業務経験と照らし合わせるなどして直観的に判断することを可能にします。
■掲載情報詳細 S. Ishikawa, M. Todo, M. Taki, Y. Uchiyama, K. Matsunaga, P. Lin, T. Ogihara and M. Yasui, "Example-based explainable AI and its application for remote sensing image classification," International Journal of Applied Earth Observation and Geoinformation, Vol. 118, p. 103215, 2023.