- 週間ランキング
次に研究者たちは、理論構築の基盤として、細胞の生死と個体の生死を区別する必要がない単細胞生物を想定し、細胞内部で起こる生命活動を計算対象とすることにしました。
たとえば細胞に外部から物質Xが取り込まれ、それが物質Yに変換されることでエネルギーが発生し、最終的に物質Yが体外に排出されるときにいった反応です。
このような反応は、糖分が分解されエネルギーが取り出される過程をはじめ、生命活動の最も基本的な形となっています。
研究では、このような基本的な生命活動が行われ続けている状態を「生きている状態」としました。
生きている状態が続く限り、細胞が糖を分解してエネルギーを取り出し続けるように、物質Xが物質Yに変換されてエネルギーを取り出す反応が続けられます。
次に研究者たちは、外部の栄養濃度や酸素濃度を制御して、この反応の進み具合を調べました。
すると本物の細胞と同じく外部の栄養濃度や酸素濃度といった条件が良好な場合「XとYとエネルギー」を基本とした生命活動が順調に続けられることが判明。
また条件を多少悪化させただけでは、反応が一時的に不活性化状態に陥るだけで、その後の条件の改善により活性化状態に復活できることが示されました。
このような一時的な生命活動の不活性化は「生きている状態」に戻れることから「死んでいる状態」とは見なされません。
しかし研究者たちが解析を進めると、このような幸運な復活劇は常に起こるわけではありませんでした。
栄養濃度や酸素濃度の設定を厳しいものにして、一度不活性化してしまうと、その後にどんなに条件を改善しても、2度と活性化しないことがケースが存在したのです。
酸素供給を24時間止められた脳細胞が、その後に大量の酸素と栄養素に満ちた培養液に浸されても生き返らないように、生の世界(活性状態)に2度と戻らないこともありました。
研究者たちは、そのように復活が起こる場合と起こらない場合のデータを集め「物質(例: X、Y)」や「エネルギー」に関連付けたパラメータを用い、3次元のグラフとして可視化しました。
この図では周囲の部分が「生きている状態に戻れる領域」中央部分が「生きている状態に戻れない領域」を示しています。
外部環境が変化に合わせて、細胞の生命活動はこの3次元空間の中を彷徨います。
実際にモデルを動かしてみると、周辺領域に留まる限りは条件が悪くても生命活動が再開できるものの、中央領域に入ってしまった場合には、その後にどんなに栄養濃度や酸素濃度を優遇しても、2度と活性状態には戻らないこと……つまり永遠に「死んだ状態」になることが明らかになりました。
研究者たちは「周辺と中央を隔てる境界面は、渡ってしまうと2度と「生きている状態」に戻れない、三途の川に相当するものであると考えることができる」と述べ、この境界面を三途の川になぞらえて「三途の超曲面」と名付けました。
(※正確にはSeparating Alive and Non-life Zone を略してSANZとしています。また論文中ではSANZ hypersurface:SANZ超曲面とも記述されています)
もし単細胞生物の病院があるならば、医者たちは「X、Y、エネルギー」の数値を血液検査のように測定することで、その細胞が今後生き残る可能性があるかどうかを判断できるわけです。
これまで様々な生命科学の理論が打ち立てられてきましたが「三途の超曲面」という概念を含むモデルは非常にユニークかつ画期的な試みと言えるでしょう。
参考文献
「死」の数理理論を構築
https://www.s.u-tokyo.ac.jp/ja/press/10595/
元論文
Theoretical basis for cell deaths
https://doi.org/10.1103/PhysRevResearch.6.043217?_gl=1*45vlx7*_gcl_au*MTQ1MjgyNDczMS4xNzMyNjY0MTEx*_ga*NDc0MDg5NTkwLjE3MjAzOTI3NTM.*_ga_ZS5V2B2DR1*MTczMzQ2MjY1My4yOS4wLjE3MzM0NjI2NTMuNjAuMC4yNTU1MTUyNzI.
ライター
川勝康弘: ナゾロジー副編集長。 大学で研究生活を送ること10年と少し。 小説家としての活動履歴あり。 専門は生物学ですが、量子力学・社会学・医学・薬学なども担当します。 日々の記事作成は可能な限り、一次資料たる論文を元にするよう心がけています。 夢は最新科学をまとめて小学生用に本にすること。
編集者
ナゾロジー 編集部